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Abstract. We consider the electrical breakdown properties of a series of L bundles, each 
containing w fibre elements. Each fibre is supposed to be a resistor having resistance ra 
with probability p ,  and having resistance r, with probability 1 - p ,  provided that the power 
dissipated over the fibre is less than a threshold value. However, the fibre bums out and 
changes into an insulator for higher powers. In this model, two fundamentally different 
breaking behaviours appear depending on the parameters w, p ,  and h r b / r a .  For one 
case, breaking occurs only on the weakest bundle. For the other case, breaking propagates 
across bundles. In the latter case, the configuration average external voltage has to be 
increased by -w-”*  exp(-w) to reach the final breakdown after the first breaking. We 
also find that the total number of bonds broken becomes a maximum when the ratio of 
the two resistances is equal to 4 for w + Co. In addition, we discuss the application of this 
model to the problem of ‘a stand-by system without repair’. 

Recently electrical breakdown problems [ 13 have drawn much attention as an analogy 
for mechanical fracture in disordered media. For example, a resistor-fuse network 
with a constant breaking strength in percolation disordered systems [l-31 or with 
random breaking strengths in homogeneous systems [4] were introduced to study 
fracture phenomena in composite systems. In these systems, the breaking of individual 
bonds is caused by the coherent effects, screenings or enhancements, induced by many 
defects. Even in quasi-one-dimensional fibrous structures, the coherent effects between 
many flaws play a crucial role in the breaking process. This strongly correlated 
phenomena makes it difficult to analyse macroscopic breaking behaviour. Phoenix 
et a1 [5-61 have studied rupture in the fibrous bundles for many years, for example 
breakdown of the fibre bundles when the breaking strength of each fibre is not identical. 
In this case, breakdown of the entire system is not always caused by breaking on a 
single bundle, but occurs after crack propagation across many bundles. Due to this 
complicated mechanism, analytic understanding associated with rupture in the fibrous 
bundles still remains unclear. Recently, Sornette [7] also considered failure of the 
strings in a series of bundles, in which microscopic understanding of the breaking 
process is absent. 

In this work, we introduce and consider an electrical breakdown model of a 
quasi-one-dimensional structure composed of two different types of resistors in order 
to study the breaking process in fibrous bundles. More specifically, the system consists 
of a series of L bundles (blobs), each of which contains w strands (bonds) as shown 
in figure 1. The strands in a bundle are composed of two different types of resistor 
having resistances r, and rb ( ra  < rb) ,  with probability p and 1 - p  respectively. Each 
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Figure 1. Schematic picture of the two-component 
bubble model. The bonds with the resistance r, are 
indicated by arrows. 

Figure 2. Phase diagram in the parameter space by 
p and w. Regions (I ) - (V)  indicate different regimes 
defined in the text. 

resistor burns out and turns into an insulator if the power dissipated on the resistor 
is beyond the critical value, say 1. We assume that when the number of the weakest 
bonds is more than one, all of them burn out simultaneously. After the first breaking 
occurs, we also assume that there is sufficient time for the modified network, in which 
the hottest bond has been removed, to reach a new equilibrium voltage state before 
further fuse burning takes place. Next, we recalculate the new equilibrium voltage 
distribution. Now a new weakest bond may be identified, and then broken. This 
process is repeated until the network is divided into two pieces. In the breaking process, 
the system is maintained by constant external current I. This model is a simple 
description of a series of composite fibre bundles in the sense that bonds in the same 
bundle are indistinguishable in their relative positions, and breaking strengths of 
individual fibres are assumed to be uniform. In spite of the simplications, we can still 
observe interesting features of breaking propagation. 

A similar chain structure, the bubble model, has been introduced previously [8]. 
The bubble model is the rb+m limiting case, of the model we consider here. The 
bubble model was introduced to describe percolation cluster by choosing the length- 
width relation L - ew. With this relation, a non-trivial percolation threshold can exist 
in a finite reigon of probability p. We will use this relation in this problem. Using the 
bubble model, we studied the maximum voltage drop in a percolation-type random 
resistor network. When the correlation length 6 in percolation clusters is much less 
than the system size L, the voltage drops across horizontal bonds are very small. Hence 
we may neglect horizontal bonds when we consider a problem associated with positive 
higher moments of the voltage drop distribution, like the problem of the random fuse 
model [ 11. Thus squeezing horizontal bonds, which generates a quasi-one-dimensional 
structure like the bubble model, does not change the essence of the physics and makes 
the problem soluble. However, it is not obvious that the two-component bubble model 
we consider represents the random resistor network [9] which consists of two different 
types of resistors with resistances r, and r6 with probability p and 1 - p  respectively 
in a L x  L system. However, the two-component bubble model is useful in its own 
right for the study of rupture phenomena in fibre bundles. 

We obtain two microscopically different breaking processes depending on the 
probability p, the ratio of two resistances rb/rrr ,  and the system size w. For one case, 
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breaking occurs only on a single bundle, and for the other case breaking occurs on 
many bundles in a catastrophic way. In both cases we obtain breaking strengths and 
breaking probability distributions analytically. In the latter case, we have to increase 
the external voltage by w - ” ~  exp(-w) to reach the final breakdown after the first 
breaking occurs. This increment turns out to be a more fundamental quantity in the 
sense that the breaking probability distribution function is expressed in terms of the 
increment. The failure distribution follows the Weibull distribution. The Weibull 
constant is found to be non-universal and depends on the probability p and the two 
resistances r, and rb. Finally we argue that this model can be applied to the problem 
of ‘stand-by systems without repair’ [ 101. 

Let us begin by considering a single blob (bundle) composed of k bonds with 
resistance r, and w - k bonds with resistance rb. Hereafter we shall call this kind of 
blob a ‘k-blob’, and call a bond with resistance r,, ( r b )  an ‘A-type’ (B-type) bond. In 
this structure, if the blob is biased by the current I, the currents flowing through an 
A-type bond and a B-type bond, i,(k), ib(k), are 

rbz 

i,(k) = kr, + ( w  - k)r, b 
and the power dissipated over an A-type 

for k#O 

for k=O 

for k #  w 

for k = w 

bond and a B-type bond is given by 

for k#O 

for k=O 
(3) 

for k # w 
(4) 

for k = w. 

For the case k # 0 or k f w, the ratio of the powers dissipated in each type of bond 
is simply Q,(k)/Qb(k) = rb /ro  > 1, which implies that A-type bonds do break earlier 
than B-type bonds. Moreover, because Qa(k) > Q,(k+ l ) ,  A-type bonds in k-blobs 
break earlier than A-type bonds in (k+l)-blobs.  But if a blob composed only of 
B-type bonds exists, we have to compare Qa( l )  with Q b ( 0 )  to determine the hottest 
bond. After simple calculations, we obtain Qa( 1) > Qb(0) when w > w, such that 

Thus if w < w, then the hottest bond is a bond in the blob composed only of B-type 
bonds. But if w > w, then the hottest bond is an A-type bond in the 1-blob. For the 
former case, the initial breaking leads to breakdown of the system, but for the latter 
case the initial voltage required to break the hottest bond is not sufficient to lead to 
breakdown of the entire system. Thus we need to increase the external voltage to reach 
the failure of the system. 
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However the 0-blob does not have a finite probability of existing in the entire region 
of probability p. As we studied in [8], the probabilities for a 0-blob and for a I-blob 
to exist are given respectively by 

( 6 a )  

P , ( p ;  L ) = l - ( l - W p q " - y .  ( 6 b )  
These probabilities show sharply decreasing behaviour in a finite region of probability 
as shown in figure 4 of [8]. Thus when p < p o ,  depending on the ratio of Qb(0) and 
Qa( I), the initial breaking takes place either on A-type bonds or on B-type bonds. If 
the breaking is initiated by the B-type bonds, then the initial breaking immediately 
leads to breakdown of the system. But the breaking initiated by A-type bonds does 
not lead to the system breakdown. However when p > p o ,  breaking begins with A-type 
bonds in the blob having the smallest number of A-type bonds. 

More precisely, we first consider the trivial case that breaking only occurs on E-type 
bonds, which occurs for w < w, and p < po (region (I)  in figure 2). The power dissipated 
on a B-type bond is 

P, (p ;  L) = 1 - ( I  - q w y  

where V is the external voltage and R is the total resistance of the system. Since the 
initial breaking occurs when the power Qb(0) = 1 ,  the breaking voltage is vb = ( w / h ) R .  
The average breaking voltage over configurations is (vb) = ( w / G ) ( R > ,  and the average 
resistance is found to be 

For large w, we apply the central limit theorem to evaluate (8), and obtain 

ra rb exp(-it2) dt 
L b  

( R ) -  1. wr, + ( rb  - ra)  wp + t+ 

L ra rh -- 
ra+p(rb-ra)  

( 9 )  

where we used the relation k = wp + t G ,  thus a = --, and b = m. From 
(4), we obtain 

where vo(p, h )  means a function of p ,  h, but not of the system size w. 
Next consider the case when breaking is triggered by burning of the A-type bonds. 

In order to determine which bonds should break after the first burning, we think of 
breaking A-type bonds in a k-blob. After A-type bonds break, the power dissipated 
on B-type bonds in the k-blob is 

Q b ( k ) =  rbZ2/ (W-k)* .  ( 1 1 )  

If this power Qb( k) is larger than the power Qa( k + 1 )  on A-type bonds in ( k  + 1)-blobs, 
then the next breaking does not propagate to other blobs, but occurs on E-type bonds 
in k-blobs. However, when Ob( k )  < Qa( k + l ) ,  breaking propagates to the ( k  + 
1)-blobs. In this case, after breaking is initiated on k,-blobs, where ko-blobs are the 
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blobs with the narrowest width of A-type bonds in the system, breaking propagates 
to ( k o +  1)-blobs, and (k0+2)-blobs, so on. Here the narrowest width ko depends on 
probability p.  This propagation will continue up to k,-blobs which satisfy Qb(k,) 3 

Q,(k,+l) .  From (3) and ( l l ) ,  we obtain k,  to be 

(12) 
(Jr,rb - ra ) w - ( rh - ro ) k,  = 

rh - r, + 6 
Specially if ko-blob satisfies the condition, Q6(ko) > Q,(kb+ l ) ,  then the breaking 
occurs only in ko-blobs. This implies the case ko> k , ,  which appears in region (11) 
in figure 2. 

After the A-type bonds in k,-blobs break, the power disspated on a B-type bond 
in the same blob is 

rh (3' rh12 - 
( W - k, )2  - ( w - k,)2 

Qb(k,) = 

where Rf is the resistance of the system after breaking of A-type bonds up to k,-blobs. 
If this power is larger than 1, the B-type bonds in k,-blobs break, and the system 
reaches breakdown. Hence the average breaking voltage is 

In order to evaluate the breaking voltage ( v h ) ,  we need the final resistance (Itf), which 
is evaluated as 

Again for large w, we use the central limit theorem to evaluate (15), and obtain that 

exp(-it2) d t  (16) 1 .lob ( wq - t G -  wr, + ( r h  - r , )  wp + t* 
rb ra rb 

(Rf)-(Ri) = E  
where a = ( k 0 -  w p ) / G ,  and b = ( k c -  w p ) / = .  We change the variables, t, a, and 
b to dimensionless variables t', a', and b', which are defined by t = f i t ' ,  a =&a' 
and b = f i b ' .  Hence, if we drop the prime notation, (16) can be rewritten as 

where a = ( ko/ w - p ) / G  and b = (k , /  w - p ) / 6 .  
Equation (16') is a Laplace integral [ l l ] ,  and the asymptotic behaviour of the 

integration depends on the signs of a and b. The final result is so complicated that 
we present only the size-dependent behaviour as follows. (i) When a < 0 and b < 0 
(region (111) in figure 2), or a > O  and b>O (region(IV)), we use the method of 
integration by parts, and obtain that 

(Rf) - (Ri) -  L W - ~ ' *  exp(-w) ( R J -  Lw- '+  L w - ~ ' ~  exp(-w) (17) 

with inappropriate constants set to 1. (ii) When a < O  and b>O (region (V)), we use 
the steepest descent method, and obtain that 

( R f ) - ( R i ) - L w - ' .  (18) 
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Since (Ri)-  Lw-', (Rf)-  Lw-'. Hence, using (14), we obtain the average breaking 
voltage to be 

p )  + w-"* exp( - w )  
(19) 

for case (i) 
for case (i i)  

where uo(p,  h ) ,  given in (lo),  means a function of p,  and h, but not of the size w. 
Hence the average breaking voltage shows the breaking propagation mechanism to be 
exponentially dependent on the system size for a broad range of values of the probability 
p ,  the regions (111) and (IV). However, even in case (ii), we do not exclude the 
possibility of having a correction term of 6(e-"). 

Since we know the size-dependent behaviour of the breaking voltage explicitly for 
case (i), we focus on case (i) to consider the breaking probability distribution. When 
the system is biased by the breaking voltage ob, the system would not break if it is in 
a configuration such that the narrowest width of A-type bonds is larger than k,. This 
configuration exists with the probability G( kc): 

G(kA = ( 1  - jo ( ;)P*4"*)L. 

Hence the probability that the system breaks is F(k,) = 1 - G( k,). Again using the 
central limit theorem, we evaluate Z t c  (T)pkq"-*  and find G(kc) to be 

G(kc)-(1 -mw-"*exp(-lw))' (21) 

where m and 1 are constants independent of w, but they depend on the probability p 
and the resistances r,, rb. Using the breaking voltage, (19), we derive the breaking 
probability F (  &): 

F ( u b ) -  1 -eXp(-AL(t+,-Uo)') (22) 

where A is a function of w, but not of ub. Hence it turns out that the breaking 
probability is of the Weibull distribution with the argument ?&- uo.  The quantity 
ub - uo represents the increment of the external voltage through the breaking propaga- 
tion. Hence we may say that the increment is a more fundamental quantity in the 
distribution function. We test the failure distribution by numerical simulation at p = 0.6 
with w = 10, for different resistance ratios, r, = 3, rb = 6 and r, = 3, rb = 9 in figure 3. 
Both cases obey the Weibull distribution, but with different slopes, which confirms the 
theoretical prediction. 

At this stage, it would be interesting to apply this model to the problem of a stand-by 
system without repair or a service system with waiting lines [ 101. If we regard B-type 
bonds as supplementary devices, then after A-type bonds break, B-type bonds take 
over the operation, because burnings occur only on A-type bonds up to kc-blobs. An 
interesting inquiry associated with the stand-by systems may be to determine when the 
stand-by system can play its role most effectively. That reduces to the question deciding 
what value of the ratio of the two resistances maximises number of bonds broken. 
Thus from (12), k, is maximum when the ratio of two resistances is 

h c = ( w + & T l ) 2  w + l  (23) 

Hence when w + 03, the total number of fibres broken in the breaking process becomes 
maximum when the ratio h, is -4. 
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Figure 3. The distribution of breaking strengths F ( u b ) .  Plot of X = -In[l - F ( v b ) ]  as a 
function of ob - U,, on a double logarithmic scale, for the cases w = 10, p = 0.6, r, = 3, rh = 6, 
(0) r, =3, r, =9, ( x )  for IO4 configurations in both cases. We choose values U,,= 1.62(0), 
U,,= 1.42(x), obtained by attempting to fit to the Weibull form. The phenomenological 
values uo may in part cause the data to deviate from the linear line for small U,,- U,,. 

We may summarise the results obtained in this work as follows. Depending on the 
probability p ,  the ratio of two resistances rb/ror and the width w, two intrinsically 
different breaking behaviours can appear. For one case, breaking occurs only on the 
weakest bundle. For the other case, breaking propagates across bundles. Using simple 
probability theory, we derived that the configuration average voltage, ub, required to 
break the system must increase by -w-"2 exp(-w) in breaking propagation, and this 
increment turns out to be a more intrinsic quantity in the breaking process. The failure 
probability is of the second type of Weibull distribution with a non-universal Weibull 
constant. The Weibull constant depends on the system disorder, probability p and 
resistances r,, rb.  Numerical simulation confirms the theoretical prediction. We also 
found that the total number of bonds broken is maximised by choosing the ratio of 
two resistances to be -4 for w + 00. Finally we discussed the problem of a stand-by 
systems without repair in connection with the rupture of two-component fibrous 
bundles. 
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